Функции бактериальной клетки и органоидов мезосом, нуклеоида,капсулы, цитоплазмы, рибосом, клеточной

Экология СПРАВОЧНИК

Информация

Нуклеоид

Слияние нуклеоидов на полюсах клеток (перед спорообразованием). Clostridium sporopenitum.

Ядерные элементы, или нуклеоиды бактерий. Бактерии относятся к прокариотам, т. е. организмам, не содержащим морфологически обособленных ядер. У бактерий есть тельца, именуемые нуклеоидами, или хроматиновыми тельцами. Они содержат дезоксирибонуклеиновую кислоту (ДНК) и выполняют функции ядра. Делению клетки предшествует деление дискретных телец— нуклеоидов, которые можно выявить специфическими реакциями и методами окраски, особенно после предварительной специальной обработки препаратов. Функции ядерного аппарата бактерий соответствуют функциям ядер у эукариотов, т. е. служат носителями наследственных признаков вида и передают их потомству.[ . ]

Нуклеопротеиды состоят из белка и нуклеиновых кислот. Поскольку нуклеиновые кислоты вначале выделялись из растительных и животных клеток, содержащих ядра (nucleus — ядро), предполагалось, что они находятся только в ядрах. Позже с помощью цитохимических методов нуклеиновые кислоты были выявлены, кроме хромосом, в митохондриях, рибосомах, в независимых генетических элементах — плазмидах и гиалоплазме.[ . ]

Здесь С — центральный нуклеоид; — параметр, характеризующий структуру различных онковирусов, способную меняться в результате внешнего или внутреннего воздействия соответственно-N и В — соответственно концентрации электронов и ионных образований, составляющих онковирус; т1 и т2 — соответственно концентрации «работающих» электронов и ионных комплексов’ П, — продукт фототермической реакции; Е — энергия ЭМИ; кТ — тепловая энергия.[ . ]

При делении бактериальной клетки в ее нуклеоиде не удается установить какой-либо реорганизации, сравнимой с перестройкой ядра при делении клеток более высоко организованных организмов. Дочерние нуклеоиды образуются в результате либо перешнуровывания исходного нуклеоида, либо расхождения под углом двух его половин.[ . ]

КС — клеточная стенка, ЦПМ — цитоплазматическая мембрана, H — нуклеоид.[ . ]

КС — клеточная стенка, ЦПМ — цитоплазматическая мембрана, Н — нуклеоид, ФМС — фотосинтезирующие мембранные структуры, Увел, х 40 ООО.[ . ]

У бактерий ДНК упакована менее плотно, в отличие от истинных ядер; нуклеоид не обладает мембраной, ядрышком и набором хромосом. Бактериальная ДНК не связана с основными белками — гистонами — ив нуклео-иде расположена в виде пучка фибрилл.[ . ]

У бактерий ДНК упакована менее плотно, в отличие от истинных ядер; нуклеоид не обладает мембраной, ядрышком и набором хромосом. Бактериальная ДНК не связана с основными белками — гистонами — ив нуклео-иде расположена в виде пучка фибрилл.[ . ]

Молодые, интенсивно делящиеся клетки Clostridium sporopenitum. Видны делящиеся нуклеоиды. Окраска ядерного вещества по методу Романовского —• Гимза. Увел. X 3500.

Молодые интенсивно делящиеся клетки аназробов содержат нуклеоиды в виде гантелек, или У-образных фигур (рис. 46). Перед спорообразованием деление клеток прекращается, они резко увеличиваются в размерах. В это время происходит накопление большого количества запасного питательного вещества — гранулезы,— откладывающегося в виде гранул, из-за чего цитоплазма становится зернистой, а сами клетки раздуваются, принимая вид лимона (клостри-дии) (рис. 47—49) либо барабанной палочки (плектридии) (рис. 50, 51). Лишь у части про-теолитических анаэробов клетки не меняют своего первоначального вида, сохраняя обычную палочковидную (бациллярную) форму (рис. 52).[ . ]

Генетическая информация бактерий не ограничивается ДНК, расположенной в нуклеоиде бактериальной клетки. Как уже отмечалось в предыдущих разделах книги, носителями наследственных свойств служат также внехромосомные элементы, получившие общее название плазмид. В отличие от ДНК ядерных эквивалентов-нуклеоидов, являющихся органоидами бактериальной клетки, плазмиды представляют собой независимые генетические элементы. Потеря плазмид или их приобретение не отражается на биологии клетки (приобретение плазмид оказывает положительное влияние лишь на популяцию в целом, повышая жизнеспособность вида). К трансмиссивным относят плазмиды, инициирующие свойства доноров у клеток-хозяев. При этом последние получают новое качество — возможность конъюгировать с клетками-реципиентами и отдавать им свои плазмиды. Клетки-реципиенты, приобретая во время конъюгации плазмиды, сами превращаются в доноров.[ . ]

У бактерий нет такого ядра, как у высших организмов (эукариотов), а есть его аналог — «ядерный эквивалент» — нуклеоид (см. рис. 2, 5), который является эволюционно более примитивной формой организации ядер-ного вещества. Микроорганизмы, не имеющие настоящего ядра, а обладающие его аналогом, относятся к прокариотам. Все бактерии — прокариоты. В клетках большинства бактерий основное количество ДНК сконцентрировано в одном или нескольких местах. В клетках эукариотов ДНК находится в определенной структуре — ядре. Ядро окружено оболочкой— мембраной.[ . ]

При изучении сверхтонких срезов спор эубактерий удалось установить, что центральная часть заполнена спороплазмой, содержащей несколько нуклеоидов. Спороплазма покрыта оболоч- кой, составляющей внутренний покров, называемый интиной; наружный слой — оболочка споры, придающая ей высокую резистентность к воздействию реактивов, благодаря чему споры трудно окрашиваются. В вегетативных клетках бактерий ее не бывает. Однако некоторые авторы руководств по микробиологии без основания считают, что стенки спор не содержат соединений, характерных для стенок вегетативных клеток, и состоят из других веществ. Высказывается предположение, что входящая в состав оболочки устойчивых к высокой температуре спор кальциевая соль диаминопимелиновой кислоты частично обусловливает терморезистентность спор.[ . ]

Первым признаком наступления спорообразования является изменение морфологии ну-клеоидов, принимающих вид шаровидных телец. Далее несколько нуклеоидов сближаются на одном из полюсов клетки, сливаются и образуют продольно расположенный извитый хроматиновый (ядерный) тяж (рис. 53, 54 и схема 1 на табл. 32).[ . ]

Анаэробы, как и другие бактерии, лишены настоящего ядра, окруженного мембраной и обладающего набором хромосом, ядрышком и ядерным соком. Вместо этого имеется аналог ядра — нуклеоид. Часто нуклеоид называют просто ДНК-содержащей плазмой (рис. 43).[ . ]

Принципиальное строение клеток кокков в целом не отличается от такового у других прокариотных микроорганизмов. Клетки кокков состоят из клеточной стенки, цитоплазматической мембраны, цитоплазмы с различными включениями и нуклеоида.[ . ]

ДНК в клетках E. coli представлена одиночной двухцепочечной кольцевой молекулой, м. м. около 2 х 10®, что составляет, примерно, 3 х 10® пар азотистых оснований. Она выполняет роль функционально активной хромосомы, получившей название нуклеоида. Последний является гаплоидной структурой. Поскольку расстояние между парами азотистых оснований в ДНК E. coli составляет около 3,4 Ä, то контурная длина молекулы ДНК бактерий этого вида составляет около ОД см, что превышает длину содержащей ее клетки примерно в 600 раз, а диаметр лишь 20 А (диаметр одиночной клетки E. coli равен около 0,75). Поэтому считают, что хромосома (ДНК) внутри бактерий этого вида существует в виде «свернутого генома», занимающего 1/6 объема клетки, т. е. в свернутой (скрученной) форме в виде около 50 петель, каждая из которых находится в сверхскрученной форме. Поскольку «свернутый геном» можно дестабилизировать обработкой РНК-азой, то считают, что в его состав входит также и РНК. Кроме того, в его составе обнаружены низкомолекулярные белки, роль которых еще не выяснена.[ . ]

Читайте также:  Диета при почечной недостаточности – основные принципы и примерное меню

Крайне малые размеры клеток являются характерной, но не главной особенностью бактерий. Все бактерии представлены особым типом клеток, лишенных истинного ядра, окруженного ядерной мембраной. Аналогом ядра у бактерий является нуклеоид — ДНК-содержащая плазма, не отграниченная от цитоплазмы мембраной. Кроме того, для бактериальных клеток характерны отсутствие митохондрий, хлоропла-стов, а также особое строение и состав мембранных структур и клеточных стенок. Организмы, в клетках которых отсутствует истинное ядро, называются прокариотами (доядер-ными) или протоцитами (т. е. организмами с примитивной организацией клеток).[ . ]

Протопласт цианофицей не имеет ядра, как и протопласт бактерий. В протопласте различают более прозрачную неокрашенную часть — центроплазму—и периферическую, содержащую пигменты — хроматоплазму. В центроплазме имеются более уплотненные участки, или нуклеоиды, представляющие собой ядерные эквиваленты, в которых обнаружены ДНК и РНК- В клетках цианофицей есть полости, заполненные газом — газовые вакуоли. Под микроскопом они выглядят черными тельцами; закономерны для планктонных родов, так как способствуют их пребыванию во взвешенном состоянии. Структур, содержащих пигменты, в центроплазме нет. Нуклеоиды синезеленых водорослей не отделены от цитоплазмы ядерной оболочкой так же, как и у бактерий.[ . ]

У бактерий иногда наблюдается половое размножение-Электронно-микроскопическое изучение кишечной палочки позво— лило обнаружить прс топлазматические мостики между парами этой бактерии, причем одна из клеток — мужская, а другая — женская. При этом происходит частичная передача дезоксирибонуклеиновой кислоты нуклеоида от мужской клетки в женскую.[ . ]

Из всего сказанного следует, что местом синтеза белков и всех ферментов в клетке являются рибосомы. Образно выражаясь, это как бы «фабрики» белка, как бы сборочный цех, куда поступают все материалы, необходимые для сборки полипептидной цепочки белка иэ аминокислот. Природа же синтезируемого белка зависит от строения и-РНК, от порядка расположения в ней нуклеоидов, а строение и-РНК отражает строение ДНК, так что в конечном итоге специфическое строение белка, т. е. порядок расположения в нем различных аминокислот, зависит от порядка расположения нуклеоидов в ДНК, от строения ДНК.[ . ]

По вопросу о ядерных структурах бактерий до сих пор нет единого мнения. Несомненным является наличие ядерного вещества, состоящего главным образом из дезоксирибонуклеиновой кислоты (ДНК)- По мнению одних исследователей, ядерное вещество в клетках бактерий находится в диффузном (распыленном) состоянии. Другие ученые находили дифференцированное (обособленное) ядро. Электронная микроскопия позволила выявить у некоторых видов бактерий ядроподобные образования — нуклеоиды (от лат. пиЫеиэ — ядро). Однако по сравнению с ядрами клеток высших организмов эти образования имеют более простое строение. Нуклеоиды не отделены от цитоплазмы оболочкой и поэтому не имеют постоянной формы.[ . ]

Большое разнообразие географических и экологических условий, в пределах которых возможно расселение и существование в природе отдельных видов микроорганизмов, также накладывает свой отпечаток на химический состав клеток и отражается на биохимических функциях микробной популяции. Современные методы лабораторного эксперимента позволяют расчленить микробную клетку на ее органеллы и изучать в отдельности химический состав жгутиков, оболочек, протопласта, мембран, рибосом, нуклеоидов, а также содержимого протопласта: различные запасные питательные вещества — гликоген, волютнн, жиры, пигменты, витамины и другие метаболиты.[ . ]

Наследственные свойства бактерий или отдельные признаки закодированы в единицах наследственности — генах, линейно расположенных в хромосоме вдоль нити ДНК. Следовательно, ген является фрагментом нити ДНК- Каждому признаку соответствует определенный ген, а часто еще меньший отрезок ДНК — кодон. Иначе говоря, в нити ДНК в линейном порядке расположена информация обо всех свойствах бактерий. При этом у бактерий есть еще одна особенность. В ядрах эукариотов содержится обычно несколько хромосом, число их в ядре постоянно у каждого вида. Нуклеоид бактерий содержит лишь одно кольцо из нити ДНК, т. е. одну хромосому. Однако запасом информации, заключенным в одной хромосоме или в кольцеобразно сомкнувшейся двунитчатой спирали ДНК, сумма наследственных признаков бактериальной клетки не исчерпывается. Плазмиды содержат ДНК, также несущую генетическую информацию, передаваемую от материнской клетки к дочерней.[ . ]

Центроплазма клеток сине-зеленых водорослей состоит из гиалоплазмы и разнообразных палочек, фибрилл и гранул. Последние представляют собой хроматиновые элементы, которые окрашиваются ядерными красителями. Гиалоплазму и хроматиновые элементы вообще можно считать аналогом ядра, поскольку в этих элементах содержится ДНК; они при делении клеток делятся продольно, и половинки поровну распределяются по дочерним клеткам. Но, в отличие от типичного ядра, в клетках си-не-зеленых водорослей вокруг хроматиновых элементов никогда не удается обнаружить ядерной оболочки и ядрышек. В нем встречаются и рибосомы, содержащие РНК, вакуоли и полифосфатные гранулы.[ . ]

Решающее прямое доказательство генетической рюли ДНК было обеспечено разработкой методов генной инженерии, создавшей возможность конструирования рекомбинантных молекул ДНК с заданными свойствами. К настоящему времени возможности генной инженерии показаны на примере клонирования многих генов самых различных организмов. Что касается косвенных доказательств, то они известны очень давно и их несколько. Для ДНК характерна специфичность локализации в клетках, поскольку она обнаруживается только в ядрах клеток (хромосомах), митохондриях (у животных) и хлоропластах (у растений). У многих микроорганизмов ДНК локализована только в ядерной области (нуклеоиде) или в цитоплазме в виде плазмид. Для организмов каждого вида характерно определенное количество ДНК на клетку (табл. 10).[ . ]

Читайте также:  Септопластика - операция по исправлению носовой перегородки - «Моя 11-летняя борьба с насморком, зак

В клетках гиф содержится по одному или несколько ядер. У некоторых фикомицетов в клетке спорангиеносца может содержаться много десятков и даже сотни ядер. Многоядерность наблюдается и в конидненосцах аскомицетов, у базидиомицетов она менее выражена. Строение ядра у грибов типично для эукариотов растительных организмов. Ядро покрыто оболочкой — нуклеолеммой — и имеет ядрышко и хро-матиновое вещество или хроматиновую нить, распадающуюся на определенной возрастной стадии клетки на присущее каждому роду постоянное число хромосом. Наличие ядерной оболочки у ядер эукариотных микроорганизмов (грибы и водоросли) — отличительный признак структуры их клеток. Нуклеоиды прокариотных микроорганизмов лишены оболочек, а хроматиновые нити не распадаются на хромосомы.[ . ]

Цитоплазма представляет собой коллоидный раствор, дисперсной фазой которого являются сложные белковые соединения и вещества, близкие к жирам, а дисперсионной средой — вода. У некоторых форм бактерий в цитоплазме содержатся включения — капельки жира, серы, гликогена и др. Постоянными составляющими бактериальных клеток являются особые выросты цитоплазматической мембраны — мезосомы, в которых содержатся ферментные окислительно-восстановительные системы. В этих образованиях идут в основном процессы, связанные с дыханием бактерий. В мелких включениях — рибосомах, содержащих рибонуклеиновую кислоту, осуществляется биосинтез белка. Большинство видов бактерий не имеет обособленного ядра. Ядерное вещество, представленное ДНК, у них не отделено от цитоплазмы и образует нуклеоид. Транспортировка веществ, необходимых для жизнедеятельности клетки, и отвод продуктов обмена осуществляется по особым каналам и полостям, отделенным от цитоплазмы мембраной, имеющей такое же строение, как и цитоплазматическая. Это структурное образование называется эндоплазматической сетью (ретикулум).[ . ]

Нуклеоид бактериальной клетки

Каждый, кому приходилось разрушать бактериальные клетки в мягких условиях, например с помощью лизоцима или детергентов, наблюдал

Рис. I.1. Нуклеоид E. coli

а – электронно-микроскопические фотографии срезов бактериальных клеток, полученные методом криофиксации. 1 и 2 – один и тот же снимок (последний ретуширован). На фотографии 2 белыми пятнами отмечены области цитоплазмы, свободные от рибосом. На фотографии 3 видны молекулы ДНК, специфически окрашенные с помощью антител;

б – модель нуклеоида в функционально-активном состоянии А. Райтера и А. Чанга. Изображены многочисленные петли активно транскрибируемой ДНК

замечательную картину превращения легко подвижной суспензии бактериальных клеток в вязкую желеобразную массу, простое перемешивание которой требует усилий. Это происходит из-за того, что компактно упакованные гигантские хромосомы бактериальных клеток (длина хромосомной ДНК E. coli составляет

4,6 млн. п.о.) после разрушения оболочки клеток выходят в окружающую среду и свободно в ней распределяются. В лизатах бактериальных клеток их ДНК прочно ассоциированы с белками, освобождение от которых требует проведения многократных фенольных депротеинизаций. Такой простой опыт наглядно указывает на то, что в бактериальных клетках их единственная хромосома сильно компактизована и, возможно, пространственно упорядочена.

Электронно-микроскопическое изучение срезов бактериальных клеток в разных условиях и более ранние исследования бактерий с помощью светового микроскопа продемонстрировали компактное распределение ДНК в бактериальной клетке. Поскольку такие структуры отдаленно напоминали ядра эукариот, они получили название нуклеоидов, или ДНК-плазмы. Эти термины подчеркивают генетические функции нуклеоида, но в то же время и существенные морфологические отличия от обычных интерфазных ядер эукариот, прежде всего, отсутствие ядерной оболочки, которая бы отделяла гены бактерии от окружающей их цитоплазмы. Исследование бактериальных клеток с помощью электронной микроскопии в мягких условиях без предварительной химической фиксации показало, что нуклеоиды представлены в виде диффузно окрашенных областей, свободных от рибосом (рис. I.1,а). При этом вытянутые участки ДНК на внешней части нуклеоидов направлены в окружающую цитоплазму. С помощью специфических антител установлено, что молекулы РНК-полимеразы, ДНК-топоизомеразы I и гистоноподобного белка HU ассоциированы с нуклеоидами. Вытянутые участки ДНК по периферии нуклеоидов обычно интерпретируют как сегменты бактериальной хромосомы, вовлеченные в транскрипцию. Полагают, что эти участки состоят из петель ДНК бактериальной хромосомы, которые в зависимости от физиологического состояния клетки находятся в транскрипционно-активном состоянии или втягиваются внутрь нуклеоидов при подавлении транскрипции. Модель функционально-активного нуклеоида А.Райтера и А.Чанга представлена на рис. I.1,б. По мнению авторов, размытая структура поверхности нуклеоидов, видимая под электронным микроскопом, отражает подвижное состояние активно транскрибируемых петель ДНК. В этой модели четко прослеживается аналогия со структурой хромосом типа ламповых щеток у животных.

Таким образом, нуклеоид бактериальных клеток не является статическим внутриклеточным образованием или компартментом, которые можно четко определять морфологически. Напротив, во время различных фаз роста бактериальных клеток нуклеоид непрерывно меняет форму, что, по-видимому, сопряжено с транскрипционной активностью определенных бактериальных генов. Так же как и в хромосомах эукариот, ДНК нуклеоида ассоциирована со многими ДНК-связывающими белками, в частности гистоноподобными белками HU, H-NS и IHF, а также топоизомеразами, которые оказывают большое влияние на функционирование бактериальных хромосом и их внутриклеточную компактизацию. Однако детальные молекулярные механизмы конденсации бактериальной ДНК с образованием лабильных «компактосом» (по аналогии со стабильными нуклеосомами эукариот) пока неизвестны. В последнее время возрастает интерес к бактериальному так называемому LP-хроматину (low protein chromatin), для которого характерно относительно низкое содержание белкового компонента. Аналогичный LP-хроматин обнаруживают у вирусов, в митохондриях, пластидах и у динофлагеллят (жгутиконосцев). Следовательно, этот тип структурной организации генетического материала претендует на универсальность и ассоциирован с определенными формами регуляции экспрессии генов, свойственными прокариотическим организмам.

Читайте также:  Что-то мешает в горле - ощущение как будто что-то застряло и давит, что может мешать, какой то комок

В последние годы наблюдается прогресс в исследовании первичной структуры бактериальных хромосом. Определена полная последовательность нуклеотидов хромосом паразитических бактерий: микоплазмы Mycoplasma genitalium и Haemophilus influenzae. В 1997 г. усилиями интернационального коллектива ученых была определена полная первичная структура хромосом E. coli и Bacillus subtilis длиной в

4,6 и 4,2 млн п.о. соответственно Все это позволяет надеяться, что в ближайшее время произойдут новые открытия в области исследований структуры бактериальных геномов и функционирования их генов.

Геном архебактерий

Царство архебактерий представляет собой своеобразную и наименее изученную таксономическую группу прокариот. Хотя по своей морфологии Archeabacteria похожи на привычные эубактерии, на молекулярном уровне они сближены с эукариотами. Эти микроорганизмы часто рассматривают как прокариотические эволюционные предшественники эукариот, в связи с чем представляется целесообразным рассмотреть строение генома архебактерий более подробно.

Архебактерия Methanococcus jannaschii, первичная структура генома которой была полностью определена в 1996 г., обнаружена в горячих морских глубоководных источниках. Энергию для жизнедеятельности этот микроорганизм получает при восстановлении двуокиси углерода до метана молекулярным водородом. Температура, близкая к температуре кипящей воды, является оптимальной для его роста, который может происходить при давлении более 200 атм. M. jannaschii не требует для своего роста органических соединений: все необходимое для жизни он синтезирует из неорганических веществ – CO2, NH3 и т.п. Геном M. jannaschii состоит из основной кольцевой хромосомы и двух небольших внехромосомных элементов, размеры которых составляют соответственно 1700, 58 и 16 т.п.о. Подобные размеры геномов типичны для архе- и эубактерий. Интересно, что GC-состав ДНК этого ярко выраженного термофила невысок и составляет всего 31%. Геном организован компактно: обнаружено

1700 потенциальных кодирующих участков ДНК, по одному на каждые 1000 п.о.

Многие ДНК-локусы M. jannaschii не обнаруживают гомологии с уже известными последовательностями. Функциональное значение большого числа потенциальных кодирующих последовательностей генома этого микроорганизма остается невыясненным. Таким образом, M. jannaschii отличается от других прокариот и эукариот большим набором только ему свойственных генов и функций. Анализ структуры генома M. jannaschii показал, что гены, организующие системы обработки генетической информации – транскрипции, трансляции и репликации ДНК, в большей степени напоминают гены эукариот, чем бактерий. При этом гены системы трансляции оказались наиболее консервативными (обладали наибольшей гомологией) у прокариот, эукариот и архебактерий. Из них гены рРНК – универсальны, так же как и гены некоторых рибосомных белков. Специфические рибосомные белки M. jannaschii имеют гомологов у эукариот, но не у эубактерий. Большинство распознанных факторов трансляции у этой архебактерии также оказалось эукариотического типа. То же, хотя и в меньшей степени, относится к аминоацил-тРНК-синтетазам.

При сравнительном анализе генов системы транскрипции оказалось, что РНК-полимеразы M. jannaschii и эубактерий обнаруживают гомологию среди субъединиц, формирующих минимальный фермент, однако архебактерия обладает малыми дополнительными субъединицами, которые не свойственны эубактериям, а их гомологи имеются у РНК-полимераз эукариот. Лишь два из основных факторов транскрипции M. jannaschii гомологичны таковым эукариот, а один или два фактора рассматриваются, как «рудиментарные» формы соответствующих эукариотических факторов. Таким образом, система транскрипции архебактерий сегодня представляется как более простая и, возможно, более примитивная версия соответствующей эукариотической системы.

В геноме M. jannaschii найден только один ген, кодирующий ДНК-полимеразу, которая напоминает эукариотическую ДНК-полимеразу e. ДНК-полимераза Pol III, осуществляющая репликацию ДНК у эубактерий, не имеет гомолога у M. jannaschii. Высокую гомологию с белками эукариот обнаруживают и другие белки архебактерии: гистоны, белки, контролирующие деление клетки, протеасомы, факторы элонгации трансляции, белки систем репарации и транспорта. Для M. jannaschii, как и для эубактерий, характерна организация генов в виде оперонов. Однако в первом случае опероны встречаются редко и почти всегда объединяют гены субъединиц белковых комплексов, например РНК-полимеразы, рибосом или метил-коэнзим М-редуктазы. В то же время довольно редки опероны, содержащие гены, объединенные по принципу контроля последовательных метаболических реакций. У M. jannaschii такие гены могут быть случайным образом распределены по геному.

Итак, несмотря на то что архебактерии образуют особое царство и по ряду своих генетических свойств приближаются к эукариотам, размер их генома и набор основных генов остаются типичными для свободно живущих бактерий.

Нуклеоид

Нуклеоид (означает подобный ядру, также известен как ядерная область) — компартмент неправильной формы внутри клетки прокариот, в котором находится генетический материал. ДНК нуклеоида имеет замкнутую кольцевую форму. Такой способ хранения наследственной информации может быть противопоставлен способу эукариот, у которых ДНК упакована в хромосомы и изолирована имеющей мембрану органеллой — ядром.

Нуклеоид может быть легко идентифицирован электронной микроскопией при сильном увеличении. Несмотря на то, что он не имеет постоянной формы, он ясно виден на фоне цитоплазмы. При специальном окрашивании нуклеоид также можно различить под световым микроскопом.

Состав

Эксперименты показывают, что нуклеоид состоит в основном из ДНК (примерно 60 %), а также содержит РНК и белки. Последние два компонента представляют собой в основном матричную РНК и белки, регулирующие экспрессию генов бактериального генома. В состав нуклеоида входят также структурные белки, которые способствуют компактизации ДНК, то есть несут функцию, схожую с функцией гистонов в эукариотических клетках.

См. также

  • Прокариоты
  • Цитоплазма

Ссылки

  • Prescott, L. (1993). Microbiology, Wm. C. Brown Publishers, ISBN 0-697-01372-3
Это заготовка статьи по цитологии. Вы можете помочь проекту, дополнив её.
Это заготовка статьи по бактериологии. Вы можете помочь проекту, дополнив её.

Что такое wiki.moda Вики является главным информационным ресурсом в интернете. Она открыта для любого пользователя. Вики это библиотека, которая является общественной и многоязычной.

Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License.

Ссылка на основную публикацию
Фулфлекс капсулы инструкция по применению · GitHub
ФУЛФЛЕКС Показания к применению Способ применения Побочные действия Противопоказания Беременность Условия хранения Форма выпуска Состав Фулфлекс - натуральный продукт на...
Фрамицетин — состав, форма выпуска препарата и схема лечения
Сложное в лечении ринита и риносинусита оставьте нам Многим из нас знакома ситуация, когда, промучившись насморком несколько дней, мы ждем...
Французская косметика список брендов аптечной и другой косметики из Франции
Французский крем для лица в аптеке – лучшие бренды Для большинства модниц мира важно, чтобы в арсенале косметических средств обязательно...
Фундук калорийность, польза и вред ореха для организма мужчин и женщин, содержание белков, жиров, уг
Фундук - калорийность, пищевая ценность и химический состав Энергетическая ценность или калорийность фундука составляет 660 Ккал на 100 г. Калорийность...
Adblock detector